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Fig. 1. Starting from a single random point, our dynamic illustration method creates high-quality stipple drawings with a small number of iterations (left to
right: 12, 14, and 18 iterations). In the example shown above we end up with 36k points of constant size.

We propose an adaptive version of Lloyd’s optimization method that dis-

tributes points based on Voronoi diagrams. Our inspiration is the Linde–

Buzo–Gray–Algorithm in vector quantization, which dynamically splits

Voronoi cells until a desired number of representative vectors is reached.

We reformulate this algorithm by splitting and merging Voronoi cells based

on their size, greyscale level, or variance of an underlying input image. The

proposed method automatically adapts to various constraints and, in con-

trast to previous work, requires no good initial point distribution or prior

knowledge about the final number of points. Compared to weighted Voronoi

stippling the convergence rate is much higher and the spectral and spatial

properties are superior. Further, because points are created based on local

operations, coherent stipple animations can be produced. Our method is also

able to produce good quality point sets in other fields, such as remeshing of

geometry, based on local geometric features such as curvature.
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1 INTRODUCTION
In many computer graphics applications, points are to be distributed

randomly, but with almost uniform point-to-point distances. Ex-

amples are sampling sets for rendering, halftoning applications in

print technology, refinement of meshes in geometry, as well as artis-

tic rendering methods such as stippling. A widely used method to

create such point sets is based on an optimization method using

Voronoi diagrams, proposed by Stuart Lloyd [1982] and thus later

called Lloyd’s algorithm. The method takes a given point set, com-

putes its Voronoi diagram and moves each point to the centroid of

its Voronoi cell. This is repeated until the points are well distributed.

Deussen et al. [2000] and later Secord [2002] used it for producing

stipple patterns, and a number of methods for generating sampling

patterns have since taken advantage of it (see Section 2).

Despite its various applications, a number of problems are known

for Lloyd’s algorithm and weighted Voronoi stippling. First, there is

no clear mechanism to stop the iteration—it will finally end up in

hexagonal subsets (cf. Balzer et al. [2009]) which are distracting for

visual applications. Second, a good initial point distribution has to

be given. In absence of such a set, the method converges extremely

slowly because points have to be moved by local optimization over

large distances to be grouped where a higher density is needed.

In 1980, notably two years before Lloyd presented his work, re-

searchers in Vector Quantization proposed a method that dynam-

ically adapts a set of vectors based on properties of their Voronoi

Diagram. The Linde–Buzo–Gray (LBG)-Algorithm [1980] represents

a given set of training vectors with a small set of exemplars that

are computed by repeatedly moving them to the centroids of their

Voronoi cells. Based on an initially given vector (the centroid of

the whole training set), its Voronoi cell is computed, the vector is

moved in the same way as Lloyd’s algorithm moves points, then the

cell is split and the vectors are moved again. This is repeated until a

given number of representative vectors is reached (see Figure 3).
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We extend this algorithm to also allow points to be merged, cre-

ating a dynamic method that adapts easily and precisely to given

density functions, allows varying dot sizes, enables time-coherent

stipple animations and can also be applied in remeshing of geometry.

As shown in Figure 1, starting from a single initial random point,

our method generates new points until a wanted density (here the

greyscale values of an input image) is reached. The method splits a

Voronoi cell when the point density has to be increased and merges

neighboring cells, i.e. deletes corresponding points, when it is too

high. A hysteresis function is used to stabilize the iteration. This

allows different target distributions to be quickly reached, even

from a single initial point, and to locally adapt to given constraints

such as wanted size of Voronoi cells or needed point density (see

Figure 2).

After reviewing related works, we describe the method and eval-

uate its precision as well as performance and compare it to state-of-

the-art methods in stippling and sampling. To demonstrate its appli-

cability beyond 2D problems, we implemented a dynamic remeshing

method for geometry based on the algorithm.

2 RELATED WORK
In 1980, Linde, Buzo, and Gray [1980] developed their algorithm for

vector quantization. The algorithm is known for creating optimal

codebooks with wanted sizes and has many applications in image

compression and data reduction [Joshi et al. 2014]. Two years later,

Lloyd published his Voronoi-based optimization algorithm [Lloyd

1982] that can be seen as a variant of k-means clustering. Both al-

gorithms are used in many applications within computer science,

but it took some time until they were introduced to graphics. Pel-

leg and Moore [2000] refined k-means in their x-means clustering
method by using a variant of LBG-clustering that splits regions in

dependency to a scoring function that evaluates both the original

cell and the two potential new cells. If the score is higher for the

new cells, splitting is done.

Stippling. Deussen et al. [2000] use Lloyd’s method to create point

patterns that look similar to human stipple artworks. An initial point

set is created using a halftoning method and stipple dots are moved

within an interactive system because the original Lloyd method does

not account for local variations of the point density. Secord [2002]

enhances their scheme by adding weights to Lloyd’s algorithm.

Given the right initial distribution (he uses rejection sampling) this

allows local stipple variations to be recreated faithfully. One year

earlier, Hausner [2001] created tilings with different tile sizes by way

of an algorithm that implicitly also defines a weighted variant of

Lloyd’s algorithm by representing tiles with 3D objects of different

slope in depth for computing the Voronoi diagram. Hiller et al. [2003]

present stippling techniques that are capable of using simple shapes

instead of only dots. This is done by creating Voronoi diagrams of

these objects and by rotating in addition to just moving them.

Other researchers use different approaches to create stipple draw-

ings. Mould et al. [2007] transform an image into a regular graph

and use the gradient magnitude as edge weights. The authors apply

Dijkstra’s algorithm to place stipples while marching along edges of

this graph. Starting from a single point, edge weights are summed

up and every time the sum exceeds a given threshold, a new stipple

is added. While this produces interesting results, it is a complex solu-

tion that is not very efficient for large point sets. Kim et al. [2008] let

stipple patterns follow image features. This is accomplished by con-

straining Lloyd’s algorithm via parallel offset lines obtained from a

distance field of image features such as outlines. Kim et al. [2009] em-

ploy texture synthesis to create stipple textures from artists, which

produces images with a more natural look. Martín et al. [2010] use

a halftoning method for creating initial stipple sets and later merge

nearby stipples to reach a more uniform distribution. They focus

on the stipples’ shape and texture to produce an artistically looking

output. Li and Mould [2011] try to retain image structures instead of

just tonal values. This is achieved by processing pixels in a priority

order while focusing on extremal values similar to error-diffusion

[Floyd and Steinberg 1976].

Sampling. Early works on sampling created Poisson disk point

sets where points are distributed with constrained point-to-point

distances (cf. McCool and Fiume [1992]). Such sets are good for

sampling, but do not resemble stipple drawings created by a human.

Centroidal Voronoi Tesselations (CVT), the final outcome of Lloyd’s

method, were introduced in the same publication, but due to their

hexagonal substructures they are not optimal for sampling. Balzer et

al. [2009] address this problem: their Capacity Constrained Voronoi

Tessellation (CCVT) constrains Voronoi areas in their size during

iteration and in this way avoid regular subpatterns. Xu et al. [2011]

optimize a capacity constrained Delaunay triangulation instead of

Voronoi areas to improve the quality of the point sets. This can be

computed much faster.

De Goes et al. [2012] formulate the computation of a CCVT as an

optimal transport problem. This enables them to enforce capacity

constraints exactly via constrained minimization in the space of

power diagrams. Their method produces well suited point sets for

sampling and is able to create varying densities. It is, however, not

dynamic and needs approximately two minutes for distributing 40k

points. More recently, Xin et al. [2016] improve the speed of this

method by an order of magnitude by restricting kernel functions to

squared Euclidean distances. Chen et al. [2012] propose a variational

framework for producing Blue Noise samples in 2D and on geom-

etry with a variant of CCVT. Their combined energy term allows

sets to adapt very fast to different density levels. Vanderhaeghe et

al. [2007] propose the idea of adding and removing samples in the

context of stroke-based rendering. Their point sets retain a good dis-

tribution in 2D, follow the motion of an underlying scene, and only

very few points need to be added or removed between frames. The

LBG algorithm is also used for compression in global illumination,

specifically in the case of precomputed radiance transfer techniques

[Sloan et al. 2003; Tsai and Shih 2006]. Here the vectors correspond

to surface lighting samples and the clusters exploit local coherence

of the illumination.

Geometry. Researchersmodify vertex sets by using Lloyd’smethod

for purposes such as remeshing of geometry. On surfaces, the so-

called Restricted Voronoi Diagram (RVD) has to be computed. While

earlymethods such as fromAlliez et al. [2005] andValette et al. [2008]

compute only approximate RVDs for remeshing, more recent meth-

ods improve the quality by computing exact RVDs [Ahmed et al.

2016; Yan et al. 2009]. The RVDs are then used to perform Lloyd’s
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(a) (b) (c)

Fig. 2. LBG-Stippling of a greyscale ramp (see also Figure 6) with color-coded size error in each cell: (a) initial point distribution with Voronoi cells. On the left,
only some points are needed, thus cells are too small (blue) and will be merged (points will be deleted); on the right, many points are needed, thus cells are too
large (red) and therefore will be split (new positions of points in green); (b) set after two iterations; (c) set after six iterations.

algorithm for vertex smoothing and improving the mesh quality, but

none of the above methods use a dynamic version of this method.

Different strategies exist for vertex sets with varying density:

Surazhsky et al. [2003] insert vertices at places with high curvature

and then use Lloyd’s method for moving points to reach a smooth

mesh. Luo et al. [2014] create mesh vertices for FEM tests by using

Lloyd’s method, then perform a Delaunay triangulation, splitting

triangles according to the needed density and use the updated set

for their simulations. Tournois et al. [2009] interleave Delauney

refinement and Optimal Delauney Triangulation, which is a variant

of CVT.

Some dynamic methods are used to update various point pro-

cesses: Klingner et al. [2008] propose a system that schedules re-

moval, insertion, and relaxation steps to generate isotropic distri-

butions of vertices. For meshing implicit surfaces, Meyer [2008]

employs dynamic particle systems. Here, an energy function is

defined and points are dynamically inserted or deleted to match

this energy on a local level. Adaptive fluid simulations adapt point

distributions with time coherence [Adams et al. 2007; Ando et al.

2013; Springel 2010]. None of these systems, however, use a unified

method based on splitting and merging Voronoi cells.

3 METHOD
Our method combines two main components: weighted Voronoi

stippling as an extension of Lloyd’s algorithm and a variant of

the Linde–Buzo–Gray algorithm. We describe both components

below in compact form. For a more detailed description of the LBG-

algorithm we refer to Joshi et al. [2014], and weighted Voronoi

stippling is described in more detail by Secord [2002].

3.1 Lloyd’s Algorithm
For a given point set P, Lloyd’s algorithm first computes its Voronoi

diagram, which is a tessellation of space, into a set of Voronoi cells V
associated to each point pi . The Voronoi cellVi of a point pi contains
all points of the defining space that are closer to pi than to any other

point of P (usually with respect to Euclidean distance). For a fast

computation of Voronoi diagrams see Okabe et al. [1992] and Berg

et al. [2008]. For 2D applications, Fortune’s GPU algorithm [Fortune

1986] or Jump Flooding [Rong and Tan 2006] can be used. In all our

experiments throughout this paper we used the GPU method due

to its efficiency. After the Voronoi diagram is computed, all points

pi are moved to the centroids Ci of their Voronoi cells:

Ci =

∫
A xρ(x)dA∫
A ρ(x)dA

,

where A is the region and ρ(x) is a given density function, e.g. the

greyscale values of an input image for weighted Voronoi stippling.

After repeating this step for some iterations, the algorithm reaches

what is called a Centroidal Voronoi Distribution (CVD), where all

points are placed in the centroids of their Voronoi cells. Since such

sets often incorporate hexagonal subpatterns, the iteration is usually

stopped before convergence.

3.2 Linde–Buzo–Gray (LBG) Algorithm
The two-dimensional version of the Linde–Buzo–Gray Algorithm

creates a point set P and associated Voronoi cells V based on a set of

training points T. A given point set P is moved using a few iterations

of Lloyd’s algorithm, this time by moving a point pi to the centroid

of all points ti ∈ T contained in its current Voronoi cell Vi . The

algorithm starts with a single point P(0) and moves it to the centroid

of T by applying Lloyd’s method. Until a pre-defined number of

points is reached, each point in P(i) is replaced by two points that

are moved apart slightly (splitting). Several steps of Lloyd’s method

are applied to create a CVD of P(i) based on T. This is repeated
until P(n) has the required size. Figure 3 shows the first steps of the

algorithm
1
.

Fig. 3. Points created by Linde–Buzo–Gray algorithm and their respective
Voronoi cells on a training data set (blue) after 1, 2, and 3 splitting steps.
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(a) (b) (c) (d) (e)

Fig. 4. Approximation speed of LBG-Stippling showing faster convergence towards a good target approximation. Initially 8000 points are randomly distributed:
(a) target image; (b),(c) result of weighted Lloyd stippling after 1 and 50 iterations; (d),(e) result of LBG-stippling after 1 and 50 iterations.

3.3 LBG-Stippling
We combine the LBG-Algorithm with weighted Voronoi stippling

and this way create a dynamic stippling and point distribution

method. We apply the LBG-Algorithm on top of a domain (an input

image or a geometric shape) and start our method from a single

point or a given point set. Cells are split until a wanted point density

is reached, but in contrast to the LBG-algorithm we also merge cells

when the density is too high. It has to be noted here that we do not

really merge cells due to the corresponding computational overhead,

but instead delete points and let subsequent iterations re-insert

erroneously removed points. This, however, leads to the situation of

Figure 2(a) where all points in the left region are deleted because the

merge-criterion is given for each point. An analogous discussion of

how many cells should be split and merged in each iteration can be

found in Pelleg andMoore [2000]. Here, the authors suggest splitting

half the centroids for which the respective indication is given. Our

method, which splits and removes every candidate, represents an

even more aggressive approach. While this results in a massive

overshooting of the target function, the overall system is stable

enough to still converge. It is known from such stable systems that

overshooting even improves the approximation speed (cf. Cohen et

al. [1993]).

For creating a stipple drawing, we assume that each point repre-

sents a given amount of ink (determined by its size). Thus, we know

how much ink (or greyscale value in the input image) should be rep-

resented by its corresponding Voronoi cell because the stipple point

stands for the respective image region. Splitting and merging of

cells tries to achieve this required size. The handling of white areas

is, similar to related methods such as weighted Voronoi stippling, a

problem that we solve by assuming a minimal grey level.

Our algorithm has two main parameters: an upper threshold Tu
that determines when a cell is to be split, and a lower threshold Tl
for merging cells. These parameters describe a hysteresis function

that is needed to stabilize the process and to avoid cells that were

split in the previous iteration to be merged again. In each iteration

we first calculate the Voronoi diagram. For each Voronoi cell we

compute the sum of the contained greyscale values. If this value is

below Tl , we remove the point. If the value is between Tl and Tu ,
we keep the point and move it to the centroid of its Voronoi cell; if

it is above Tu , the cell is split (see Algorithm 1 and Figure 2). We do

1
Adapted from http://www.data-compression.com/vq.html.

not split the cells’ generator, but the centroid instead. For each cell

the splitting direction is defined along its largest extent, with the

displacement vector length depending on the cell size. Currently

we estimate the displacement as
1

2
· r , with r being the radius of the

inscribing circle of the cell. With this form of displacement we try

to distribute new points as evenly as possible, anticipating possible

displacements of subsequent iterations. While random insertion

of new points is also possible, here it takes more iterations until

the same smoothness for the points is achieved. Splitting cells into

more than two new cells is possible, but does not provide much

better runtime results in practice and creates the problem of locally

distributing the newly created points.

3.4 Convergence Rate
Compared to weighted Voronoi stippling, our method adapts much

faster to a given density function. Figure 4(a) shows an input image

that is to be approximated with an initial random point set (b). If

Algorithm 1 LBG stippling

1: function LBG(Tl ,Tu )
2: stippleList← initialize stipple list

3: repeat
4: vd← computeVoronoiDiagram(stippleList)

5: newStippleList← empty list

6: for all Voronoi cell vc ∈ vd do
7: density← vc.sumDensity

8: if density < Tl then
9: // remove point

10: else if density < Tu then
11: // keep point

12: newStippleList.add(vc.centroid)

13: else
14: // split point

15: splitPoints← splitCell(vc)

16: newStippleList.add(splitPoints)

17: end if
18: end for
19: stippleList← newStippleList

20: until no splitting or merging

21: end function
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Fig. 5. (a) Error for density approximation in Figure 4: LBG-Stippling converges very fast, even from a single initial point. (b) Convergence rate for different
hysteresis thresholds. The number of points after each iteration for the teaser image (Figure 1) are shown on the right, a = Tu −Tl . (c) Performance comparison
on a uniform density distribution for an increasing number of points.

we apply weighted Voronoi stippling, the input is not represented

well even after 50 iterations, whereas LBG-stippling creates a good

distribution after only a few iterations. In Figure 5(a) we show the

corresponding approximation error. We determined the error as the

mean squared difference of the density in each Voronoi cell com-

pared to the area of the corresponding circular point. LBG-stippling

is displayed here in two variants: in the first variant the same ran-

dom initial points are used as for weighted Voronoi stippling; in the

second variant only a single initial point is given. Even in this case

we reach a good approximation after only 15 iterations.

We also investigated the convergence rate of our algorithm for

different settings; results for the teaser images are shown in Figure

5(b). The rate primarily depends on the hysteresis parameter a =
Tu −Tl , which determines the range of ‘acceptable’ values for each

Voronoi cell. If a is too small, the point set starts to oscillate and

the number of iterations until convergence increases, or in the

worst case the algorithm does not reach convergence at all. Dense

areas have the tendency to undergo more changes because, due

to our pixel-based approach, these areas are often under-sampled

compared to areas with larger Voronoi cells.

Choosing a larger a will result in fewer oscillations and fewer

needed iterations, but will also decrease the quality of the resulting

point set, especially in dark areas. Here points have the tendency

to flow apart, which results in reduced contrast. The iteration can

thus be optimized by changing a over time. A small hysteresis at the

beginning might be used to adapt quickly to the wanted greyscale

level. Later, the hysteresis interval is increased to stabilize the point

set. Throughout the paper, we increased the hysteresis parameter

linearly over time for all our results and the accompanying demo

program, excluding the measurements for Figure 4. We will discuss

the choice of hysteresis parameters and their effect on the approxi-

mation quality in the next subsection. The initial number of points

does not play a major role because our splitting approach can create

or delete points at an exponential rate. Choosing too many initial

points is also not an issue because cell merging removes such points

efficiently. In Figure 5(c) we compare the performance of our algo-

rithm to that of Lloyd’s method and two state-of-the-art blue noise

generation methods—CCVT [Balzer et al. 2009] and BNOT [de Goes

et al. 2012]—for a constant density function with an increasing

number of points. The Lloyd relaxation stop criterion was set to

δ = 0.75 of overall movement with point coordinates pi ∈ [0, 1]
2
,

for our algorithm we set a = 0.6 and used 100 random starting

points. For both our method and Lloyd’s method, we used the same

underlying GPU framework. Our algorithm is clearly faster than

Lloyd relaxation due to the fact that we need far fewer iterations

until convergence; however, a single iteration is slightly slower due

to the splitting and merging overhead.

3.5 ApproximationQuality
To measure the approximation quality of our algorithm, we try to

reproduce different tonal values for a quadratic intensity ramp. Ide-

ally, the relative amount of points in each quarter should represent

the relative amount of ink (greyscale value) in the ramp, cf. Figure 6.

A method such as BNOT allows such tonal values to be represented

faithfully. Because we are not able to control the number of points

in our sets directly, we pre-defined a point size resulting in a point

set that approximates the given number reasonably well. In this

case we ended up with 1000 points on average, which is the same

number used by de Goes et al [2012].

Our system uses a hysteresis function to stabilize the overall

process, thus it is quite likely that a bias is introduced. During our

iteration it is not guaranteed that the cell sizes will automatically

be in the middle between our thresholds Tu for splitting and Tl
for merging, but rather they could be anywhere in between. For

a symmetric hysteresis Tu = 1 + a/2, Tl = 1 − a/2 we measured

the ratio between existing and desired sizes of the Voronoi cells

and computed the average over all cells. Without bias this value

should be 1; in our experiments we measured values in a range

of [1.02 − 1.06], depending on the number of points and initial

conditions. Thus, LBG-stippling seems to have a tendency to under-

represent a wanted greyscale level.

Nevertheless, our method still approximates a given greyscale

image faithfully. We compare the intensity approximation against

BNOT in Figure 6. For obtaining our values, we averaged 100 stipple

approximations. As in de Goes et al. [2012], we computed the relative

point counts for the four quarters of the input ramp. While we
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Algorithm Quarter 1 Quarter 2 Quarter 3 Quarter 4

Reference 1.55% 10.92% 29.69% 57.83%

BNOT [2012] 1.50% 10.90% 29.60% 57.90%

Ours 1.49% 10.76% 29.71% 58.03%

Fig. 6. Representation of a greyscale ramp: de Goes et al. [2012] set of 1000
points (second row), LBG stippling with close to 1000 points (third row) and
a visualization of the relative approximation error (bottom, blue indicates a
cell that is too small, red too large). The table shows relative ink density in
each quarter of the input. Points are shrunk for better visual inspection.

approximate each quarter very well, it has to be noted that for very

light areas, the Voronoi cells of the points are large and change

drastically when points are inserted or deleted. Thus for a small

point set as for the ramp, we have to use a relatively large tolerance

a to reach a stable set.

In Figure 7, we compare spatial and spectral properties of the

point sets from our algorithm (a = 0.2) to those produced by Lloyd’s

method, CCVT [Balzer et al. 2009] (1024 samples), Fattal [2011],

and BNOT. From top to bottom: example point distribution, regu-

larity visualizations by highlighting gaps and number of neighbors,

mean periodogram, radial power spectra, and anisotropy. There are

far fewer regularities compared to Lloyd’s method, shown by the

gap and neighbor visualizations. The spatial properties are much

closer to that of CCVT and BNOT. This is also true for the spectral

properties of our method: we get a flat spectrum in low and high

frequencies, maintain high peaks at the characteristic frequencies,

but have a slightly higher anisotropy at low frequencies. On the pos-

itive side we produce our point sets within seconds. The improved

properties of our algorithm compared to Lloyd’s method are mainly

due to our hysteresis: since our stopping criterion is based on a

range between Tl and Tu , our algorithm does not always converge

to the global minimum, which would cause hexagonal substructures.

Other algorithms, such as BNOT, use a post-processing step in order

to remove points from such global minima and avoid regularities.

4 RESULTS
After describing the main properties of LBG-stippling, we now high-

light some aspects of the method that distinguishes it from previous

solutions. For all results we used pixel-based Voronoi diagrams im-

plemented by a shader-version of Fortune’s method [1986]. While

this is extremely fast, it sometimes suffers in accuracy, especially for

very high point densities with corresponding small Voronoi areas.

To reduce this problem we use an offscreen buffer with a supersam-

pling factor of at least two to three, which we found to be sufficient

for common image sizes and numbers of points. We scale the input

density map on which the integration is performed by this factor

using linear interpolation.

All examples throughout this paper have been created on a com-

puter equipped with an Intel Core i7–4790K CPU with 4.0 GHz and

a Nvidia GTX 980 Ti GPU. Most of the computation time is needed

for the calculation of the Voronoi diagram; measuring and updating

the cells is very fast because all needed data is already produced

during the Voronoi diagram calculation. For 15k points we achieve

about 8 frames per second with an image size of 1200 × 1000 pixels

and a supersampling factor of 2. Our iterations are slightly slower

than Lloyd’s method due to the splitting and merging, but far fewer

iterations are needed to achieve a good stippled representation. Fig-

ure 4 shows an example of LBG stippling speed and Figure 5 shows

convergence rates for different settings.

The algorithm of de Goes et al. [2012] (BNOT) and its optimiza-

tion [Xin et al. 2016] with a speedup of factor 10 represent state-

of-the-art methods for generating blue noise point distributions.

In Figure 8 we compare our results to those of Xin et al. [2016].

From left to right we show the input image, their stippled result,

and our result, both with 10k points
2
. While their method requires

146 seconds of computation time, ours only needs 7.7 seconds. Nev-

ertheless, small structures are better preserved by LBG-stippling as

indicated by the arrows.

Typically, weighted Voronoi stippling uses error diffusion to pro-

duce an initial set of points that are then optimized using Lloyd

relaxation. In Figure 9(a) the initial set for an input image is given.

The points after 10 relaxation steps are shown in the center (0.033s),

and our result on the right (0.04s). All results contain approx. 2.5k

points. The final results are visually similar, but our algorithm does

not show the typical regularities present for the Lloyd relaxation.

4.1 Globally Varying Point Sizes
Our algorithm is capable of creating different abstraction levels

by changing the required point size. Since both merge and split

operations work based on comparing point sizes to Voronoi cell

densities, we only have to change the required point size and the

algorithm automatically determines the necessary number of points

for representing the input image (see Figure 10). We simply have to

multiply the split and merge thresholds Tu and Tl with the area of

the corresponding point. As already mentioned, it is helpful during

iterations to increase the hysteresis over time because otherwise the

algorithm might converge slowly. Typically we go from an initial

hysteresis of [0.2 − 0.6] linearly up to [0.6 − 1.0] over the course of

50 iterations. When parameters are changed during the iterations,

we reset the hysteresis to its initial value because otherwise the

algorithm might stick locally to undesired densities that do not

optimally represent the greyscale level.

2
Please note that we cannot precisely control the number of stipples, thus our shown

solution contains 9,996 points.
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Lloyd’s Method Our Algorithm CCVT [Balzer et al. 2009] [Fattal 2011] with T = 1/2 BNOT [de Goes et al. 2012]
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Fig. 7. Averaged point set properties from different algorithms for 10 realizations each with borders excluded from visualizations. Top row: example point
distributions. Second row: white disks centered on points with radius according to mean neighbor distance to highlight gaps. Third row: color-coded
visualization of the numbers of neighbors for each Voronoi cell. Fourth row: mean periodograms. Fifth and sixth row: radial power spectra and anisotropy (in
dB over frequency).
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Fig. 8. Comparison of our technique to Xin et al. [2016]. From left to right: input image, their result, and our result (10k points each). While their result
required 146 seconds of computation time, ours only needed 7.7 seconds. Our method represents details of the facade better, as indicated by the arrows.

(a) (b) (c)

Fig. 9. (a) Point set created by Floyd Steinberg, (b) result of (a) followed
by ten steps of conventional weighted Lloyd relaxation, (c) our result. Each
result contains approx. 2.5k points, scaled down for better visual inspection.

The exponential point creation rate of LBG-stippling allows the

method to double or halve the number of points and reach a new

stable set within a few iterations (typically less than 10). Due to

the implicit form of control, we are not able to represent an image

instantly with a fixed number of points. To achieve this, the point

size has to be adapted iteratively until thewanted number of points is

reached. This, however, does not have to be seen only as a drawback:

our method automatically determines the necessary number of

points for a given dot size, which is not possible for comparable

methods.

4.2 Locally Varying Point Sizes
In contrast to other methods, LBG-stippling can produce locally

varying point sizes. We can determine the size of a point corre-

sponding to a cell according to some of its properties and calculate

the split and merge thresholds accordingly. The size of newly gen-

erated points can, for example, be related to their position or to

attributes of the input image, such as the variance within a Voronoi

cell or the local greyscale level. The idea behind using the variance

is to represent small features (areas with high variance) by smaller

points. In our experiments we use a point size si determined by:

si = lerp
(√

λ/Var (Vi ), Pmin , Pmax

)
with λ ∈ [0.05, 0.8] depending on the wanted style of the result-

ing stipple drawing and Pmin , Pmax being the minimal and max-

imal point size. Figure 11(a) shows an outdoor scene with λ =
0.05, Pmin = 2, Pmax = 5. For the face in (b) and other smooth

objects λ = 0.3 and Pmin = 3, Pmax = 9 are appropriate settings.

We can also relate the point size proportionally to the greyscale

level, allowing us to save points for representing dark areas. Stipple

artists do the same and also use point variation to create more lively

illustrations. For the relief in Figure 12, points in dark areas are

three times larger than those in light areas. In this way, we reduce

the overall number points from 60k for a constant size to 39k and

at the same time represent dark areas with more contrast.

Finally, it is also possible to relate point sizes to geometric con-

straints. The female model in Figure 13(a) is rendered with radially

increasing point sizes from her eye, which allows us to visually

emphasize this area. In (b) close regions of the duck beak are ren-

dered using larger points, which allows us the highlight the depth

structure of the image.

4.3 Coherent Animations
Our algorithm works well for producing coherent animations. The

accompanying video shows an animation in which we zoom into a

Mandelbrot set. The first frame of the animation has been created

with LBG-stippling and all successive frames use the previous points

as the input point set. Since we know the optical flow in this case,

we are able to avoid the shower door effect by moving the points of

the previous frame with the flow and creating new points similar to

Kass et al. [2011] only at places where the greyscale value changed.

By doing so, only a few local changes are needed and the number

of iterations can be kept small (typically 3-5).

5 APPLICATION: REMESHING
Our algorithm can be used beyond stippling and is not limited to

the two-dimensional domain. As a short example we show that the

method can be extended to 3D surfaces in order to produce high-

quality meshes. Instead of 2D images, we now perform splitting and
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(a) (b) (c)

Fig. 10. Different point diameters used to represent an input image, creating different numbers of points and levels of abstraction: (a) 56k points (size 2), (b)
14k points (size 4), and (c) 6.3k points (size 6). Input image courtesy of P. Debevec.

(a) (b)

Fig. 11. Two stipple drawings with varying point sizes based on variance in the input image: (a) variable point size with λ = 0.05, Pmin = 2, Pmax = 5; (b)
variable point size with λ = 0.3, Pmin = 3, Pmax = 9.
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(a) (b)

Fig. 12. Point sizes in relation to the local greyscale level: (a) Egyptian Relief (Husband and Wife, Walters Art Museum), represented with 39k points from size
2 to 6; (b) upper image showing cutout from (a), lower image showing cutout from a relief with 60k points of constant size 3.

(a) (b)

Fig. 13. Point sizes in relation to other constraints: (a) radial increase from the eye of the model (original image by Bùi Linh Ngân, Flickr). In (b) the beak of
the duck is rendered with points enlarged depending on their distance to the viewer.
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(a) (b) (c) (d)

Fig. 14. Adaptive sampling of a height function and a geometric model with density defined by the color coded mean curvature: (a),(b) about 600 adaptively
sampled points; (c) 5k adaptive points on the Stanford bunny; (d) remeshed result of (c).

merging operations on a surface that is represented by a triangular

mesh. Because our method ultimately distributes vertices similar to

Lloyd’s algorithm—at least if cells are no longer split or merged—we

are not able to surpass the quality produced by the most recent

works on remeshing (cf. Ahmed et al. [2016]). Nevertheless, our

method allows quick adaption to local geometric features such as

curvature.

To compute the Voronoi diagram on a mesh, we adopt the method

by Liu et al. [2011], which is based on exact geodesic distances

instead of Euclidean distances. To approximate the area and density

integral of each Voronoi cell, we use the discrete area and density

of the vertices of the underlying mesh. To approximate the centroid

of each cell, we use the method proposed by Wang et al. [2015] and

iteratively move a base point to the centroid. In each iteration, we

first project the cell to the planar tangent region of the current base

point using geodesic polar coordinates [Melvær and Reimers 2012],

and then update the point to the centroid of the projection. Once

we found the centroid, we project the cell to the planar region for

new splitting points.

We define the density function on the surface by local feature

sizes or simply by the curvature. In the latter case, we use the

mean squared curvature to compute the needed point density. Fig-

ures 14(a),(b) show adaptive sampling of a height function based

on the mean curvature. Starting with 16 random initial points, our

method converges after 20 iterations with about 600 points. Fig-

ures 14(c),(d) show an adaptive sampling of a bunny model with

5K points, and a remeshing result generated from these points by

applying a mesh extraction algorithm [Yan et al. 2009]. We list the

statistical properties of some input meshes in Table 1 according to

Yan et al. [2014]: the values indicate that our method can compete

with state-of-the-art methods (see Table 3 in their paper).

6 CONCLUSION AND FUTURE WORK
We present a dynamic version of weighted Voronoi stippling that

iteratively creates and removes points based on local properties of

the Voronoi cells. The method adapts rapidly to any given input

function, is able to produce stipple drawings with varying point

Table 1. Quality metrics for our adaptive remeshing algorithm based on
dynamic Voronoi relaxation according to Yan et al. [2014].

Model |X| Qmin Qavд θmin ¯θmin θmax θ<30
o V567 dH

Bunny 4746 0.390 0.799 17.72 43.93 129.24 0.766 95.1 0.47

Kitten 4064 0.369 0.803 22.67 44.31 131.74 0.541 95.7 0.28

Homer 3512 0.394 0.799 21.14 44.04 128.60 0.897 95.0 0.51

sizes, can produce stable stipple animations, and can also be applied

in remeshing of geometry. The spatial and spectral properties of our

generated point sets are superior to those of classic Lloyd relaxation

and comparable to those of CCVT and BNOT, despite the discrete

GPU implementation of our algorithm. Due to the discretization we

might introduce accuracy problems, especially in point-dense areas,

in exchange for computation speed. Aside from the hysteresis pa-

rameter a and the optional variance mapping λ, no other parameters

are required for the core method. Throughout this paper, however,

we introduced some optional parameters for more control over the

created output and to allow more artistic freedom.

Future works will include more advanced cell splitting criteria,

local error diffusion between Voronoi cells and adaptive resolution

models for density integration over Voronoi cells of different size.

We will also further investigate whether it is possible to predict

the convergence rate based on the hysteresis parameter. Due to the

efficiency of the proposed method, we also want to create point

distributions in 3D and higher dimensions, as well as adapting the

method to other objects in addition to points.
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