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Stippling of 2D Scalar Fields
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Abstract—We propose a technique to represent two-dimensional data using stipples. While stippling is often regarded as an illustrative
method, we argue that it is worth investigating its suitability for the visualization domain. For this purpose, we generalize the
Linde–Buzo–Gray stippling algorithm for information visualization purposes to encode continuous and discrete 2D data. Our proposed
modifications provide more control over the resulting distribution of stipples for encoding additional information into the representation,
such as contours. We show different approaches to depict contours in stipple drawings based on locally adjusting the stipple distribution.
Combining stipple-based gradients and contours allows for simultaneous assessment of the overall structure of the data while preserving
important local details. We discuss the applicability of our technique using datasets from different domains and conduct
observation-validating studies to assess the perception of stippled representations.
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1 INTRODUCTION

V ISUAL abstraction has been identified as one of the
top visualization research problems by Johnson [1].

When it comes to visual representation of univariate data,
we usually think of bar charts, line charts or possibly dot
plots, where abstraction is often achieved through binning
or smoothing. Although binning reduces the amount of
visualized data, task performance for continuous geospatial
data does not necessarily decrease [2]. However, it has been
shown that dot representations significantly outperform
contour representations for memorization tasks [3]. Moreover,
there is an aesthetic aspect to abstraction which is also an
important concern for many applications

In this work, we propose a dot-based technique for visual
abstraction of scalar fields based on stippling. Stippling is
a form of abstraction, where stipples (dots) are carefully
distributed to approximate shading. In that sense, stippling
of scalar fields can be seen as a controlled simplification or
non-linear smoothing of the dataset. Traditional algorithms
for stippling are difficult to steer and therefore challenging
to use in a visualization context. We aim to close this gap by
modifying a technique from computer graphics to support
binned and continuous data simultaneously.

Encoding continuous data with color scales can be
problematic because color perception is highly dependent
on the surrounding illumination [4]. In contrast, stipples
allow us to encode information in their size and density
and therefore do not require color. They are usually drawn
as black circles on a white background, making them more
robust against varying illumination. Another characteristic
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of stippling is what has been previously explored as view-
dependent information in the context of visualization [5]: by
looking closely at a region, local differences and patterns
can be investigated (in-depth information). With increased
viewing distance, larger-scale patterns dominate the visual
impression (overview). Stipples can convey information
through size and density. Our method provides fine control
over these visual variables, which can be used to either
encode additional information about the distribution, such
as contours, encode information redundantly which can
improve the overall visual impression, or combine multiple
sources of data, as shown in Figure 1.

Regarding perception, we expect stippling parameters
to have a highly non-linear effect on the result. Therefore,
we have performed crowdsourcing experiments to better
understand the influence of stipple sizes and density on
perception. Through these experiments, we also aim to give
guidance in choosing the right parameters for our algorithm.

Our contributions are as follows: We modify a stippling
algorithm for arbitrary scalar fields with adjustments to
control the point size and add restrictions for binning. With
this mechanism we introduce structure to our visualization
through more deliberate stipple placement. We also verify
our approach using psychophysical experiments and discuss
implications for usage.

2 RELATED WORK

In general, our method shares similarities with different
techniques used in cartography [6], [7]. Choropleth maps
use lightness of colors to encode quantitative areal data,
requiring the data to already be partitioned, for example
into administrative areas. However, such data is also well
suited to be depicted using symbol representations. Brewer
and Campbell [8] explore the usage and perception of such
symbols for representing quantitative data on maps.

Proportional symbol maps use the size of glyphs to
represent quantitative data either at specific locations or in
areas around it. In contrast, dot maps represent the quantity
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Fig. 1. Stippled illustration of the 2016 election data from the United States (right) that combines the population density as the distribution of stipples
(top-left, illustrated as dot map), and the vote difference for each administrative region (bottom-left, depicted using choropleth maps). Note how the
stippled abstraction visualizes both aspects of the data simultaneously.

of a feature by sampling the corresponding amount of
symbols. Dot maps are sometimes used to depict population
distributions, where each dot represents a fixed number of
people. This can lead to regions that are very dense or even
over-plotted. To solve this problem, De Berg et al. [9] describe
an approach to simplify these maps while maintaining
the given distribution. Our approach also samples a given
distribution, but also respects the size of the point that will
be placed at each location.

Non-photorealistic rendering (NPR) is a major field of
research in computer graphics and some of the developed
techniques have also been explored in the context of visual-
ization [10]. Wood et al. [11] propose sketchy rendering as a
visual variable. They conclude that this type of representation
can be used to encode additional information and may lead
to an increased engagement with the visualization. Kim et
al. [12] present a technique for aggregation, abstraction, and
stylization in the context of maps. Their visual elements are
similar to brush strokes which vary in length, density, color,
and orientation depending on the underlying multivariate
data. In contrast to our method, both of these approaches
use lines as primitives.

Stippling has also been explored in the visualization
community. Biological cell maps have been represented using
stipples [13] and share visual similarities to our visualization.
However, the point positions for these maps are part of
the input and do not need to be sampled. Lu et at. [14],
[15] propose a stipple and feature enhancement method
for volume rendering. Stippling has also been used to
visualize brain fibers [16] using diffusion tractograms. These
approaches sample stipples in predefined cells of a grid,
whereas we use an algorithm that is based on adaptively
changing Voronoi cells.

Stippling Algorithms—Generating random point sets
with almost uniform point-to-point distances is necessary
for sampling, halftoning, remeshing, and artistic rendering
methods such as stippling [17]. Lloyd’s method [18] is
one widely used optimization method based on Voronoi
diagrams to generate such point sets. For a given point set, it
iteratively moves each point to the centroid of its correspond-

ing Voronoi cell until the points are distributed equally. The
method has been extended to create different point densities,
for example, based on underlying image information [19].
Stippling with varying point sizes has also been explored [20].
A more recent stippling method is also based on Voronoi
diagrams: Weighted Linde-Buzo-Gray (LBG) stippling [21]
provides more intuitive parameters to control the final result
and can also handle variable point sizes. Some stippling
algorithms have been proposed with the goal of recreating
or introducing controlled patterns [22], [23]. However, these
algorithms focus on specific artistic effects and are limited
in their applicability for other purposes. We generalize the
algorithm of Deussen et al. [21] to work on scalar fields and
extend it to encode additional structure in the results.

Structure Highlighting—A popular approach to empha-
size structure is image enhancement, which is often used
to improve the quality of an image in a post-processing
step. Techniques range from simple contrast enhancement
methods to more elaborated ones, such as histogram equal-
ization [24], and wavelet-based approaches [25]. Luft et
al. [26] use depth information to locally enhance the contrast
between objects at different depths with unsharp masking.
This improves the perception of the spatial arrangement
within a scene. Similar ideas have been proposed in scientific
visualization: Bruckner and Gröller [27] present a method
that uses halos to emphasize the spatial relationships in
volumetric data, making it easier to judge occlusion. Everts
et al. [28] also use halos for 3D rendering of dense line data.
They highlight tight line bundles while less structured lines
are de-emphasized. Hertzmann and Zorin [29] use Mach-
bands to improve the perception of surface structure. We
employ ideas from these works, extending our stippling
algorithm to encode additional structure in the form of
contour lines.

Psychophysics in Visualization—Many studies of color
and brightness perception have been carried out, which is
reflected in the overview about color maps by Zhou and
Hansen [30]. One of the earliest studies resulted in the well-
known MacAdam ellipses [31] in which the color space
was measured through repeated pairwise comparisons of
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Fig. 2. Overview of our technique. Our approach can handle scalar fields as well as discrete points as input. We use a modified version of the
Linde–Buzo–Gray stippling algorithm that provides more control over the final appearance. By locally modifying the stipple distribution, we can
encode additional information such as contour lines into the final representation. Our method encodes distributions of the underlying data into
corresponding distributions of stipples, leaving other visual variables, such as color, free for encoding additional attributes.

a single subject (method of adjustment). Due to the high
effort involved, these measurements provided the basis
for standardized color spaces for a long time. Recently,
these studies were refined by Froehlich et al. [32] using
an adaptive procedure which iteratively attenuates a high-
intensity stimulus depending on the observers’ mistakes
(staircase method).

Because color perception is highly non-linear and context-
dependent, specialized studies for information visualization
have been conducted. For example, Ware [33] investigated
univariate color maps. Later, Mittelstädt et al. [34] developed
a technique to compensate for contrast effects. To verify
their model, they conducted an experiment in which the
participants had to draw a curve based on a non-linear
gray scale stimulus (magnitude estimation method). In fact,
such psychophysical methods can even be applied to higher
levels of perception, as shown by Rensink [35] in his study
on the perception of correlation in scatter plots. Recently,
Szafir [36] studied color differences in the context of informa-
tion visualization and questioned some of the well-known
ColorBrewer [37] color schemes. Similar to MacAdam, but
in a crowdsourcing study, she used a two-alternative forced
choice (2AFC) task-based design to obtain psychophysical
functions. In our user study we decided to use a similar
crowdsourcing-based approach. For a thorough discussion
on crowdsourcing in the context of visual representations,
we refer to the work of Archambault et al. [38].

3 OVERVIEW

Given 2D data, we aim to find a stippled representation of the
distribution of its values. To achieve this, we adapt the Linde–
Buzo–Gray (LBG) stippling algorithm [21] to continuous and
discrete scalar fields. The algorithm is based on Voronoi
diagrams: By iteratively moving each stipple to the centroid
of its Voronoi cell, global point-to-point distances become
more and more equalized. In addition to simply moving the
points, the LBG algorithm also splits and merges cells based
on the corresponding density function.

Figure 2 provides an overview of the individual steps
of our approach. First, the input data is transformed to the
target density using a mapping function. This density allows
us to establish a relation between the data that falls into the
region of a stipple, i.e, its Voronoi cell, and the conceptual
amount of ink that a stipple carries. Additionally, non-
linear mapping functions can be used to highlight relevant
information. For discrete input points in 2D, this mapping
determines how multiple data points are aggregated.

We apply our modified version of the LBG stippling
algorithm to compute the final representation. The result’
point sizes can either be determined adaptively or directly
specified by the user. In Section 5, we describe two ap-
proaches for adding contour lines to the visualization. These
methods can be seen as extensions of our pipeline and
require the extraction of contours from the mapped data.
The final stippled result reflects the underlying data with the
possibility to distinguish density changes locally. Moreover,
it can display contours to provide an overall impression of
the data simultaneously. Details for each step are described
in their respective sections of this paper.

4 STIPPLING

The Linde–Buzo–Gray (LBG) stippling algorithm has mainly
been described in the context of computer graphics, where
it is used to abstract images or for resampling meshes. In
the following, we want to generalize this method to scalar
fields by means of formalization. Generally, 2D data can
be discrete or continuous and potentially comprise a high
dynamic range.

We define a 2D scalar field as a function φ : R2 → R.
Similar to color scales, we require a mapping ρ : R→ [0, 1]
to transform the co-domain of the scalar field to unit range.
We call this the derived scalar field Φ:

Φ : R2 → [0, 1], Φ = ρ ◦ φ

In NPR, different rendering primitives and shapes have been
proposed for stippling [39], [40]. Theoretically, our proposed
method can handle arbitrary convex shapes, but for now
we will use circles with a given extent and position. The
goal of the LBG stippling algorithm is to arrange stipples
according to a given measure, in our case the values of
the transformed scalar field Φ. The algorithm starts with
a random initial distribution of stipples. Then, it evaluates
how well each stipple represents its proximity in Φ. The
neighborhood of each stipple s ∈ S is found by computing
the Voronoi diagram over the complete set of stipples.

Conceptually, we want to relate the required amount of
ink for a stipple to the values of the scalar field in its vicinity.
For continuous scalar fields, we achieve this by integrating
over its corresponding Voronoi cell Vs. The target density for
a stipple Ts is therefore given by:

Ts =

∫∫
Vs

Φ(x, y) dA
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In the case of discrete scalar fields and uniform grids, this is
the same as accumulating the density over all points or grid
cells that belong to the associated Voronoi cell:

Ts =
∑
i∈Vs

Φ(i)

According to the Linde–Buzo–Gray algorithm, we compare
Ts with the area occupied by the stipple As. More precisely,
with the area weighted by the values of the scalar field.
Three different cases can occur, as shown in Figure 3: If
a stipple represents the target density reasonably well, up
to a specified error threshold ε (Ts ∈ [As − ε,As + ε]), a
relaxation step is performed. This moves the stipple toward
the weighted centroid of its Voronoi cell (Lloyd relaxation).
In the other two cases the stipple is either split (Ts > As + ε)
into two separate cells or deleted (Ts < As − ε). This
procedure is repeated iteratively until no more splits and
merges occur and the algorithm converges. To increase
the convergence rate, the threshold ε is slightly increased
with each iteration. This marginally affects the resulting
quality in later steps, where very few changes are performed,
but guarantees convergence due to the steadily increasing
allowed error.

The main parameter of the algorithm is the stipple
size and the required number of stipples is automatically
determined. Choosing a smaller size results in more points
and thus preserves more details, whereas a larger size yields
a more abstract representation with fewer points. Because the
split and merge operations compare the contained density
of a cell to the density represented by the generating stipple,
the stipple size can vary locally. It can be set according
to its position, attributes of the scalar field, or directly
provided by the user. The original LBG stippling algorithm
supports variable point sizes by adjusting the size of a stipple
(within a provided range) according to Ts. This, however,
does not enforce the point size in any way and there are
no guarantees that all sizes within the given range are
reached. Our proposed method changes this step of the
algorithm: we set the point size according to the scalar field
and then compare its area to the target density. Through
this modification, information from the scalar field can be
encoded independently in the point size as well as the point
density. Figure 4a shows how a constant density can be
established using constant and variable point sizes. Varying
the point size but keeping the density constant does not
create a perceptually constant impression (the density of the
left looks different compared to the right), even though the
density is still accurately reflected. Figure 4b shows a density
gradient stippled using constant and variable point sizes.
Increasing the point size can be used to boost the perception

(Ts < As − ε)

Delete

(Ts = As ± ε)

Move

(Ts > As + ε)

Split

Fig. 3. Schematic illustration of the LBG stippling algorithm. Based on the
comparison between the density contained in each cell and the stipple
area, cells are either deleted, moved to the centroid of the cell, or split.

of the density. It is important to note that these two channels
are not independent: For a given density we might have
only a subset of the preferred point sizes and we restrict the
amount of required points by enforcing a certain point size.
Therefore, it is not readily possible to use these two channels
to encode two independent variables of the data.

5 EMULATING CONTOURS

It is common to add contour lines to conventional represen-
tations of scalar fields to emphasize the overall structure.
Therefore, we show how to emulate contours using stipples.
Algorithm 1 shows the LBG stippling method with our
changes to emulate contours highlighted in red. In the
following, we detail the highlighted modifications to emulate
contours by carefully adjusting the placement of stipples.

5.1 Restricted Stippling
One way of adding contours to stipple drawings is to keep
the areas belonging to the same bin visually similar and
vice versa. We achieve this by keeping the stipple size
constant within a contour. Then, we vary their density to
represent the underlying scalar values. To further emphasize
the borders between contours, we force stipples to stay within
the boundary of their current quantized regions. This results
in a visible line between these regions, because no stipples
will be placed inside the boundary region. Referring to the
Gestalt principles, this technique is also called negative space.

To enforce this behavior, we restrict the underlying
Voronoi diagrams according to contour boundaries defined
by a user-defined map. This approach has already been used
to create decorative mosaics, where tiles should not overlap
sharp boundaries of regions [41]. While previous approaches
propose to delete regions where no tiles should be placed,
we aggregate the density of the scalar field into each Voronoi
cell for the contours separately instead. During integration
of the density of a Voronoi cell, we consider only the density
that is part of the contour ci:

T i
s =

∫∫
Vs

ci(x, y)Φ(x, y) dA, where (1)

ci(x, y) =

{
1, if (x, y) is enclosed by contour i
0, otherwise

Thus, there can be up to n centroids per Voronoi cell,
depending on the number of given bins n. Other cell

(a) (b)

Fig. 4. (a) Stipples distributed with a constant density and either constant
point size (top) or variable size (bottom). (b) Increasing density, again
with constant point size (top) and variable size (bottom).
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properties, such as area and average density are treated in the
same fashion. When applying the LBG stippling algorithm,
we just consider the sub-cell with the maximum contained
density. This forces the stipple to move towards the center of
said cell, which in turn means away from the corresponding
region boundary. Figure 5 shows an example of this process.
The resulting stippled representation is similar to quantized
grayscale color, but instead of using different colors, contours
are directly encoded into the distribution of the stipples.

5.2 Mach-Banding

Our second approach to introduce contours is based on Mach-
banding. Mach-bands are an optical illusion that locally
amplify the contrast between areas that have slightly differ-
ent shading. In many applications this effect is undesirable
because it changes the perception close to boundaries. In
our method we take advantage of this illusion and show
how it can be used to emulate stippled contours. Although
we coined the proposed approach as ‘Mach-banding’, it
would be more precise to think of it as ‘Mach-banding
inspired’. Mach-banding has already been used in computer
graphics, where it is called unsharp masking, to amplify edges
or improve contrast by incorporating depth information [26].
We apply this concept in the domain of scalar fields: Starting
from a quantized grayscale map CΦ that we want to stipple,
we perform a frequency separation, keeping only the high-
pass result ∆CΦ. In practice, this means applying a Gaussian
blur Gd×d to obtain a low-pass filtered version of CΦ and
then subtracting it from the original quantized map:

∆CΦ = CΦ −Gd×d ∗ CΦ

The size d of the Gaussian can be used to control the extent of
the local contrast change. Setting its size similar to the stipple
size has yielded good results in our experiments. Then, we
use this information to modify the scalar field by blending
∆CΦ with Φ using the following blending function where
the weight is denoted by w ∈ [0, 1]:

Φ′ =

{
clamp(Φ + 2w(∆CΦ − 0.5), 0, 1), ∆CΦ > 0.5

clamp(Φ + 2w(∆CΦ − 1.0), 0, 1), ∆CΦ ≤ 0.5
(2)

The unweighted version of this function is commonly known
in image manipulation software as linear light blending.
Figure 6 shows an example of the complete process. Due
to the local nature of the technique, we vary only the
representation of the scalar field close to boundaries, while
maintaining correct values everywhere else. We discuss the
error introduced into the density map and corresponding

contour

ci
ci+1 T i+1

m

T i
n

Fig. 5. Contour lines restrict the density integration for each Voronoi cell
T i
s . Solely the density of the largest area is considered for the stippling

algorithm, and the centroid moves accordingly during the relaxation.

Voronoi cells later in Section 9. The size of each stipple is
determined by the modified scalar field. By weighing the
blending function, we can control how apparent the contours
will be in the visualization. It is important to note that for this
approach we modify the density channel while keeping the
stipple size unmodified to add contours to stipple drawings.
This leaves the other channels for encoding additional data.

We will apply our methods to real world data in Section 6,
for now we compare the results on a synthetic dataset in
Figure 7. Shown are different quadrants of the symmetric
Eggcrate function. The top left shows the scalar field, and top
right the results of the unchanged LBG stippling algorithm.
While stippling facilitates estimation and comparison of local
densities due to using discrete elements, the overall shape
of the function is not retained very well. Our proposed
Mach-banding and restricted stippling approaches are shown
on the bottom. Our contour emulation approach allows
distinguishing local density changes when looking at the
visualization from a close viewing distance, yet providing a
comprehensive overview when looking from further away.
Please note that sometimes the contours are more apparent
in the printed version of the paper.

6 EXAMPLES

In this section, we showcase our technique using real-world
geographic, election, and multivariate data to demonstrate
the effectiveness as visualization and abstraction technique.
Moreover, we aim to convey the potential design space
of stipple visualizations. For this, we also refer to the
supplemental material, which contains additional examples.

Algorithm 1: Modified LBG stippling with contours
Input : Target density function Φ
Output : List of stipples S

1 S← initialize random stipples
2 repeat
3 V← compute Voronoi diagram of S using Φ
4 foreach s ∈ S do
5 Ts ←

∫∫
Vs

Φ(x, y) dA // density for each cell

6 if restricted stippling then
7 Ts ← argmax

i

∫∫
Vs

ci(x, y)Φ(x, y)dA // (1)

8 else if Mach-banding then
9 Ts ←

∫∫
Vs

Φ′(x, y) dA // (2)

10 end
11 foreach Voronoi cell Vs ∈ V and resp. stipple s do
12 if Density Ts too low then
13 remove s from S
14 else if Density Ts too high then
15 split s into two and add to S
16 else
17 move s to weighted centroid of Vs
18 end
19 end
20 until no more splits and merges
21 return S



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH XXX, PREPRINT 6

(a) scalar field Φ (b) contour map CΦ (c) high-pass filtered ∆CΦ (d) Mach-banding Φ′

Fig. 6. The different steps that are required to emulate contours using the Mach-banding effect. Starting from a scalar field input (a) together with
the corresponding quantized grayscale map (b), we can compute a high-pass filtered version (c). The final result (d) can be obtained by stippling a
combined version of (a) and (c). Essentially, We manipulate the underlying density in the vicinity of the contours, shown in the top image of (c).

Fig. 7. Stippling techniques applied to different quadrants of the sym-
metric Eggcrate function. Top-left: target density, top-right: stippled with
the unmodified algorithm, bottom-left: contours using Mach-banding,
bottom-right: contours using restricted stippling approach.

Topographical Data—Figure 8 shows geographic height
data of Australia. The dataset [42] is based on measurements
collected during the Shuttle Radar Topography Mission (SRTM).
We use a quantized height map with four bins to guide our
restricted stippling approach. Here we invert the usual point
size mapping by using larger points in lower areas and vice
versa. This allows us to display the (usually small) high
altitude regions with more detail. The resulting visualization
shows not only the different densities, but also emphasizes
the contours and thus provides an overview of the topog-
raphy, similar to contour lines on maps. Additionally, we
encode non-quantized height information as stipple color
to make differences more apparent. While double encoding
is usually avoided in visualization, it can help people with
color vision deficiency distinguish heights.

Cartography—In cartography, it is common to show the
relationship between multiple variables. If one of these
variables is continuous, our stippling approach can be
used to compute a simplified, but still visually represen-
tative illustration of the underlying co-domain. Because
our technique supports multiple channels, we can encode
additional variables to create a bivariate visualization. An
example of this approach is shown in Figure 1: The stipple
distribution reflects the population density of the United
States of America, as recorded by the 2010 census [43],
whereas the color of the stipples shows the approximate vote
share during the 2016 presidential election [44]. As we can
see, the population density has a big influence on the result of
the election. Here, our approach has certain advantages over
existing techniques. Election results are often visualized with
choropleth maps, where the color of an entire administrative
region is based on vote share. However, this representation

Fig. 8. Elevation data of Australia created with our restricted stippling
approach. The data is quantized to four bins; each level is represented
with a discrete point size to make the distinction more clear. Additionally,
the non-quantized height is used to color-code each stipple.

can be misleading because some regions might be large in
area, and therefore visually dominant, but comprise only a
small amount of the entire population. Our method samples
the population and creates an abstract representation of the
distribution and thus does not share this problem. Stipples
aggregate the underlying data, therefore the distribution of
colors contained in the Voronoi cell of each stipple needs to
be carefully sampled as well. Our visualization was inspired
in parts by the 2016 Election Map webcomic from xkcd.

Bivariate proportional symbol maps are often used to
alleviate the area problem of choropleth maps—they allow
us to encode information in the color and size of the
symbols. Figure 9a shows an excerpt of the same dataset
with circles of different radii representing the population for
each county and color representing the difference between
the vote percentages. Figure 9b depicts the corresponding
stipple drawing for comparison. A common problem with
proportional symbol maps becomes immediately visible: the
overlap between nearby symbols. Finding the right drawing
order to reduce the overlap is a non-trivial problem [45].
Overlap cannot occur with our approach (or to a very limited
extent) due to the space-partitioning property of Voronoi
diagrams used by our algorithm.

Isocontours—In Figure 10, we show a comparison of our
contouring techniques using a stippled heightmap without
color of Mount Fuji in Japan [42]. Both techniques emphasize
the differences in height. This helps to highlight the slope
of Mount Fuji and the large plateaus in its surrounding:

https://xkcd.com/1939/
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(a) Proportional symbol map (b) Stippled distribution

Fig. 9. Comparison between a bivariate proportional symbol map (a) and
the according stippled representation (b). Proportional symbol maps can
suffer from overlap, making it hard to make out the underlying distribution.
The stippled representation does not have this problem, however the total
maximum of the distribution is harder to spot.

(a) Mach-banding (b) restricted stippling

Fig. 10. Elevation data of the Akaishi mountain range and Mount Fuji in
Japan. The Mach-banding technique (a) highlights ridges and valleys,
while the restricted stippling approach (b) shows contours more clearly.

the ocean in the south is the lowest part of this region and
therefore not covered with stipples. We use five isocontours
for both results with the minimum and maximum point
size set to 3 and 12 respectively. Here, a low number of
contours facilitates comparability between our contouring
techniques. Creating boundaries too close to each other in the
restricted stippling approach would result in empty regions
because the algorithm is not able to distribute points within
the small region between adjacent boundaries. In contrast,
the Mach-banding approach does not share this problem
because boundaries are created implicitly—points of different
contours can freely move between them. While borders are
more emphasized with restricted stippling, finer details of
the height differences are more apparent when using Mach-
banding, as can be seen on the left. However, due to the
contrast enhancement, these details are also exaggerated.
Compared to Figure 8, the point size mapping here is
inverted. We use visually more prominent larger points for
higher altitude regions to steer the attention towards the
peak of Mount Fuji, while preserving the structure of the
mountain range to the left.

Stippled Scatter Plots—Traditional scatter plots often suf-
fer from over-plotting: many points are plotted on top of each
other in dense regions, obscuring the underlying distribution.
A standard technique to tackle this problem employs kernel
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Fig. 11. Visualization of the diamond dataset, showing price over width.
Color represents clarity of each diamond. In (a) the dataset is depicted
using a regular scatter plot with all 51,772 data points, while (b) shows
the result of our stippling technique, reducing the amount of points to
3,389, showing the actual distribution more clearly.

density estimation or transforms an existing continuous data
domain, e.g., velocity, to the image domain [46]. The resulting
density field is then colored using a transfer function which
conveys an impression of depth and opacity. However, this
approach has a major drawback: areas with low point density
suffer from low contrast, making it difficult to spot outliers.

Our proposed technique can be used to avoid both of
these problems by sampling the data points. Figure 11a
shows a traditional scatter plot of diamond properties,
namely width and price. Color is used to encode the clarity.
In this example, the representation suffers from a lot of over-
plotting in the lower regions. The stippled representation
behaves differently, as can be seen in Figure 11b. Please note
how our technique reveals clusters in the data, which were
concealed by visual clutter in the traditional scatter plot.
With our method, we were able to reduce the number of
points from 51,772 points in the scatter plot down to 3,389
points. Admittedly, the points in the stippled scatter plot
do not necessarily fall onto points from the original dataset.
However, other methods from information visualization,
such as kernel density estimation, make the same compro-
mise. Nevertheless, each point is a representative of the
underlying distribution. One possible extension here would
be to incorporate actual data locations into our algorithm.
Sparse regions could use the actual data positions, whereas
regions with higher density could maintain the intended
stipple distribution, and everything in-between could use a
compromise of both. This presents a trade-off between the
accuracy of individual points and their overall distribution.

7 EVALUATION

In previous work, evaluation of NPR stippling techniques
either targeted technical verification [21] or measuring
perceived quality [47]. Therefore, our evaluation targets
the area between: the relation between parameters and
low-level perception. In contrast to the far more common
user studies [48], our goal is not to prove the usefulness
or acceptance of our technique but to discover possible
problems and opportunities for improvement. Thus, we
strive to answer a set of research questions related to the
verification and validation of our technique [49]:
RQ 1 How linear is the perception of stippling?
RQ 2 How does stippling compare to grayscale?
RQ 3 How does stippling diminish regarding perception?
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Our questions cannot be answered by means of a traditional
user study, because we want to acquire stimulus-response
functions. Therefore, we do a combination of leveraging
the idea of generative data models [50] and psychophysical
methods (Section 2).

7.1 Experiment Design
We conducted our experiments using the crowd-sourcing
platform CrowdFlower (now Figure Eight) in separate sets of
browser-based micro-tasks. In all of our experiments, one
question corresponds to one micro-task and instructions
briefly give users an introduction to stippling using artistic
images. An important factor in crowdsourcing is quality
control without scratching validity: We asked test questions
with obvious stimuli (far above the just-noticeable difference
threshold), but still difficult to distinguish from regular
stimuli. The test questions were randomly inserted, and
the participant received a notification in case of an invalid
answer. Participants with an accuracy rate below 70% on
these questions were removed from the experiment. At
the beginning of all experiments, each participant had to
complete a quiz that was randomly compiled from test
questions to verify the participants task comprehension.

7.2 Experiment: Just-Noticeable Differences
We address questions RQ 1-RQ 3 by determining and com-
paring the just-noticeable differences (JND) for stippled and
grayscale images. To determine the JNDs, we chose a classic
two-alternative forced choice (2AFC) experiment and the
method of constant stimuli as known from psychophysics.
Note that we consider only the original LBG stippling
algorithm using three different constant point sizes to reduce
the parameter space.

Procedure—All participants were instructed to locate the
dark side of linear gradient stimuli, i.e., judge the direction of
the slope between a reference point and a comparison point.
We sampled 11 even-distributed reference points between
0 (white) and 1 (black), each with up to 9 comparison
points at a distance of {0, 0.0375, 0.075, 0.15, 0.3} around
the corresponding reference point. Out of bounds sample
points below 0 and above 1 were dropped. We verified the
usefulness of the range around the reference points in a
small-scale test run. Comparison points with the maximum
possible distance of 0.3 were used as test questions. Each
stimulus was surrounded by a gray border to reduce the
influence of contrast. Moreover, we suggested participants
optimizing their viewing angle, viewing distance, and avoid
light shining directly on their screens. For each stimulus, the
participants were asked to decide whether the left or right
side were appearing darker.

Analysis—We collected 23,753 responses from 841 partic-
ipants in total. In a first step, we plotted absolute and relative
value differences along with their average detection rate to
check data quality. Then, we joined symmetric difference
pairs around each reference point to determine left/right
biases. This was a precautionary measure as our sampling
method does not necessarily produce a symmetrical result
under symmetrical parameter transformations. We fitted
logistic functions to our data with a common random
guess rate of 0.5 for 2AFC experiments. Based on the fitted
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Fig. 12. Visualization of the perceivable difference for increasing
grayscale values in comparison to stippling from our user study. The
ribbons show the 95% confidence intervals and mean values at measure-
ment points for a detection rate of 80%.

functions we can determine difference thresholds for 80%
detection rate, depicted in Figure 12.

Results—Regarding RQ 2, we can see that stippling
outperforms grayscale maps in the lower range of values (0.0
to 0.2). This supports our claim that stippling is useful in low
density regions because of the representation with discrete
elements. The explanation for this is quite obvious: black dots
have a much higher contrast on white background compared
to a gray gradient. Grayscale outperforms stippling in the
mid range of values (0.4 to 0.8) and there are almost no
differences in the upper value range.

Concerning RQ 1, all curves describing the perception
of stippling are non-linear, with a stipple size of 8 being
the closest to linear. Moreover, the dependency between the
threshold and stipple size is non-linear, as can be seen by the
bump (0.3 for size 4, 0.5 for 8 and 0.6 for 16). Note how the
bump moves from the lower third to the upper third with
increasing point size.

For RQ 3 we expected stippling to perform worse with
increasing point density, however this kind of bump was
surprising. We suspect that there are several reasons for
this: On the one hand, the algorithm tends to create regular
patterns at the border due to the handling of Voronoi cells. As
a result, stipples at the border become countable with increas-
ing size. On the other hand, perceived density might also be
related to frequency perception in our stipple visualizations.
In Figure 13, we transform two stipple sets, having low and
high constant density, to frequency space using the Fourier
transform. In contrast to standard sampling in computer
graphics, we do not transform the point positions but the
final images that also contain the stipple sizes. The resulting
frequency plots show rings that represent frequencies relating
to reoccurring distances between stipples. In the case of
lower density, these rings are clearly visible because the
point density allows distribution of stipples with similar
distances. The opposite is true for higher densities, where
placement of stipples becomes more difficult for the stippling
algorithm, to the point where individual stipples become
almost indistinguishable. This manifests as blurred rings
in the frequency plot because undesired frequencies are
introduced. We expect this effect in frequency space to

www.crowdflower.com
www.figure-eight.com
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Fig. 13. Stipples with low and high density in image and frequency space.
The blurred rings in the high density case (right) are due to frequencies
introduced by our algorithm in dense regions. We suspect this to be
detrimental for the performance in distinguishing local densities.

translate to a worse performance in distinguishing local
densities. Lastly, we cannot control parameters such as
display resolution, rasterization, and viewing distance of
each study participant. Therefore, we assume that some
combinations of these factors combined with point sizes
might have led to the bump artifact. In practical terms, this
means mid-range value differences should be boosted for
example by employing our contouring techniques.

8 PARAMETRIZATION

In this section, we give guidance by discussing the impact
of different parameters, provide some reasoning behind the
parameter selection, and list trade-offs to help others in
creating their own stippled visualizations.

Stippling—Choosing a smaller stipple size improves the
spatial resolution and amount of preserved details, whereas
a larger stipple size increases the degree of abstraction. With
increasing viewing distance, smaller points become less
visible, filtering out details represented with such point sizes.
Choosing a variable point size, either akin to the original
LBG stippling algorithm, or by specifying it via a point size
map, increases the contrast in the stippled result. Typically,
we used a factor of 3 to 5 between maximum and minimum
point size to create a reasonable contrast in the results.

The computation time is similar to the original stippling
algorithm. It mainly depends on the number of created
stipples and therefore the point size. The algorithm required
several seconds on commodity hardware (Intel Core i7-4790K
CPU at 4.0 GHz, Nvidia GTX 980 Ti GPU) for a typical
visualization in this paper (∼ 10k points). The initial number
of points and their distribution affect only the runtime of
the algorithm, not the quality of the result: The algorithm
converges to a similar number of stipples, usually after 50 to
100 iterations. In general, our method does not significantly
change the runtime of the original algorithm and adds only
a small overhead. The mach-banding technique requires a
pre-processing of the input, whereas the restricted stippling
approach increases the memory requirement proportional
to the number of contours. For a more in-depth runtime
analysis, we refer to the original LBG stippling paper [21].

Contours—Apart from the number of contours, the Mach-
banding technique has two parameters that influence the
result. Recall that we use a Gaussian blur as part of our
technique to modify the scalar field locally. The radius of this

Gaussian blur corresponds directly to the affected adjacent
stipples. We found that using the maximum stipple size as
blur radius yields good results. The weight w of the blending
function used to combine the high-pass filtered version with
the scalar field, on the other hand, is used to steer how much
the density changes in the vicinity of the contour, making it
more or less visually prominent. We used values between 0.3
and 0.8 depending on the desired emphasis of the contours.

Restricted stippling does not require parameters, but since
the stipple sizes are constant for each contour, setting suitable
point sizes becomes even more important. This was either
done with a user-provided point size map, or by distributing
the point sizes equally between the minimum and maximum
point size of the LBG stippling algorithm.

Encoding—Our presented stippling approach allows
different forms of encoding in each element (cf. Figure 14).
In this paper, we mainly used size and sometimes color as
visual variables. Additional information can also be encoded
in shape, or in Gestalt principles when looking at groups of
stipples. We already use Gestalt principles for introducing
contours, which become apparent because of proximity and
similarity. Combinations of these visual variables can be
used to encode different information or encode the same
information redundantly to further increase the perceived
difference and improve the visual impression. The core
of the algorithm works by comparing the density of a
representational element, in our case filled circles. However,
the algorithm supports arbitrary convex shapes without any
changes apart from an adapted calculation of the Voronoi
diagram. The application of glyphs in context of visualization
has been investigated thoroughly [51]. However, we consider
the exploration of this large design space for stippling to be
beyond the scope of this work.

Size Gestalt principlesColor Shape

Fig. 14. Different forms of encoding that can be utilized in the stipple
visualization. Combinations can be used to encode additional information
or introduce redundancy to further increase the visual discrepancy.

Density Mapping—In Section 7 we have already derived
the 80% JNDs for three constant stipple sizes (Figure 12).
From this, we can give some advice regarding the represen-
tation of the data. The density mapping should be root or
logarithmically scaled, because depiction works well in the
lower to mid range (0.0 to 0.5)—then the bump effect occurs,
as discussed in the evaluation. This effect has an unfavorable
impact on the value range above 0.5 with increasing stipple
size, making these densities more difficult to distinguish.
As already mentioned, we can use contours to alleviate this
problem. The ideal solution to this problem would be an
exhaustive psychophysical evaluation of the parameter space
in order to linearize it, similar to what has been achieved for
color with CIELAB. Therefore, we see our experiments as
preliminary work for further research.

9 DISCUSSION AND LIMITATIONS

Prior work [47] evaluated the relationship between the
number of stipples and the perceived quality of the resulting



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH XXX, PREPRINT 10

(a) (b) (c)

Fig. 15. Features embedded into stipplings strongly depend on the local
context. For both (a) and (b), the space between the feature and the
surrounding stipples is the same, but the space appears greater for the
smaller stipples in (b). Both stipple densities are juxtaposed in (c).

image. Their finding is that an abstraction with more stipples
leads to a higher perceived quality, however at an decreasing
rate for higher number of stipples. We were able to confirm
this connection in Section 7. Similar to other visual variables,
such as color, we have shown that the perception of stipples
as visual variable is non-linear. An important aspect of
stippled images is that the local position of the stipples
and their context can have a strong influence on how we
understand the visualization. Figure 15 shows an example of
this effect: Although the spacing between the feature and the
surrounding stipples is the same, the gap is perceived larger
when stipples in the neighborhood are smaller. We suspect
that this difference in perception is due to how humans
perceive frequency or more precisely frequency changes.

Stippling artifacts—There are several important charac-
teristics of our stippling algorithm that are carried over into
the visualization and could potentially introduce uncertainty
regarding interpretation of the visualization. Due to how the
Voronoi diagrams are calculated, stipples at the border of
the visualization can end up in a configuration with a higher
density than it is present in the data. To varying degree,
an example of this can be seen at the border of Figure 4.
One potential solution to alleviate this problem would be
to use either smaller or partial stipples in boundary regions.
However, it has to be investigated how much this idea affects
the density perception.

Another artifact that can be introduced by the LBG
stippling algorithm are hexagonal patterns. This happens
when the algorithm converges slowly (due to parametriza-
tion) and the additional steps of Lloyd relaxation lead to
stipples arranging in a regular hexagonal grid. While this
effect is certainly unwanted in the domain of rendering, it
has to be investigated how disruptive these patterns are
for information visualization. The effect can be reduced by
jittering the positions in a post-processing step.

Contour techniques—We proposed two approaches for
adding structure to the stippled representation (Section 5).
Both contouring techniques differ not only in their imple-
mentation but also in the visual result. Mach-banding leads
to surface-like regions, whereas using the Voronoi diagram
to restrict stipple position leads to lines that appear because
stipples are constrained from moving too close to the region
boundaries. The latter technique uses negative space as a
means of adding information. Figure 16 shows the error that
is introduced by the standard version of the LBG stippling
algorithm for each Voronoi cell (left). The relative size error
is color-coded so that red means a cell is too large and
blue means too small. The error for the Mach-banding

LBG stippling Mach-banding Restricted stippling

cell too small cell too large

Fig. 16. Relative error of Voronoi cells visualized for an excerpt of the
bottom left quadrant of the Eggcrate function (see Figure 7). The error of
Mach-banding follows the changes in density, while the error for restricted
stippling is more localized.

approach is shown in the middle. A higher error occurs
close to the contours due to the local change in density. On
the right, the error for the restricted stippling approach is
shown. Since stipple movement and density integration is
constrained and cannot cross a contour, an additional error
is introduced which is less uniform compared to the Mach-
banding approach. As discussed previously, the number
of potential contours differs between the two approaches.
While Mach-banding can even be used for a high number of
contours, the restricted stippling approach creates artifacts
when contours come too close to each other, creating regions
where the stippling algorithm cannot place points.

10 CONCLUSION

We have presented a novel method to visualize and abstract
continuous and discrete 2D data using stippling. The pre-
sented algorithm allows us to encode information in different
channels of stipples, such as density, size, color, and shape.
For example, we have shown how to encode additional
data in the form of contour lines in the stipple drawings.
This enables users to perceive information at different levels
of abstraction and also in a viewing distance-dependent
manner: Details are preserved at close range and can be
inspected when viewing the visualization from close-up,
whereas the overall structure can become more apparent at a
higher distance or when viewed in a smaller-than-usual size,
for example when used in thumbnails.

For future work, we want to further investigate how
stippled visualizations are perceived and interpreted by
the user. We see the potential for research on the influence
that illumination changes might have on stippling and how
task performance behaves in comparison to conventional
representations such as color scales. We also imagine in-
teresting extensions to the process of stippling. One idea
is to not restrict the representation to black stipples on a
white background, but also use white stipples on a dark
background in dense areas, further increasing the contrast.
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